Exercise 2

1. Find the hyperplanes specified by the directions $\boldsymbol{\xi}$ and points p as shown
(a) $\boldsymbol{\xi}=(1,0,2) ; \quad \mathbf{p}=(0,1,-4)$,
(b) $\boldsymbol{\xi}=(11,3,4,0) ; \quad \mathbf{p}=(1,-1,-2,-5)$;
(c) $\boldsymbol{\xi}=(2,-1) ; \quad \mathbf{p}=(3,3)$.
2. Find the plane passing through $(0,-1,1)$ and parallel to the plane $x+y+4 z=8$.
3. Find all planes passing through $(2,-3,0)$ and intersecting the plane $x-4 y+2 z=-1$ vertically.
4. Find the hyperplanes passing through the following points:
(a) $(1,9),(2,-12)$,
(b) $(1,0,-1),(2,0,3),(1,1,0)$.
(c) $(1,1,1),(1,-1,1),(-1,1,1)$.
(d) $(1,1,0,-4),(0,0,0,3),(0,-1,0,-1),(4,2,0,0)$.
5. Show that the plane passing through \mathbf{a}, \mathbf{b} and the origin is given by the determinant equation

$$
\left|\begin{array}{ccc}
x & y & z \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=0 .
$$

What happens if \mathbf{a} and \mathbf{b} are collinear?
6. Find the distance from \mathbf{P} to the hyperplane H and the point \mathbf{Q} on H realizing the distance:
(a) $(1,2), \quad x+6 y=0$.
(b) $(1,2,4), \quad x-2 y=-1$,
(c) $(2,4,6,8), \quad x-3 y-4 z+w=-6$.
7. Find two parametric forms of the straight lines described by the following system using x and z as the parameters respectively:

$$
\left\{\begin{array}{l}
2 x-6 y=0 \\
3 x+5 y-6 z=-1
\end{array}\right.
$$

8. Find the point of intersection (if any) of the lines and planes:
(a) $(0,2)+t(1,1), \quad x+3 y=1$.
(b) $(7,3,0)+t(-4,6,5), \quad 4 x+y+2 z=17$.
(c) $(15,10,5)+t(7,12,-4), \quad x+y+z=45$.
9. The angle between two planes is defined to be the angle between their normal directions (lying in $[0, \pi)$). Find these angles in the following cases:
(a) $2 x-y+z=13$ and $x+y-z=1$.
(b) $x+11 y-5 z=0$ and the $x y$-plane.
10. Find the straight lines passing through $(1,-2,3)$ and hitting the plane $x-y+6 z=-1$ at right angle. Find the point of intersection too.
11. Find the distance between the two straight lines in the following cases:
(a) $(1,2,3)+t(0,1,0)$ and $s(1,0,-2)$.
(b) $(1,0,1,0)+t(-1,0,0,0)$ and $(-1,-1,0,1)+s(0,2,-1,0)$.

Hint: The distance is realized by the line segment that is perpendicular to both lines.
12. Propose a definition of the projection of $P(x, y, z)$ on a straight line passing through the origin and then find a formula for it.
13. Find the three medians of the triangle $A(0,0), B(2,6), C(4,-4)$ and verify that they meet at a point.
14. Let $A(1,0), B(2,3), C(4,4)$ be a triangle. Determine its altitude from A to $B C$ and from B to $A C$.
15. * Let $A(3,4), B(0,0), C(2,0)$ be a triangle. Determine its angle bisector from A and from C.
16. Find the "standard forms" of the following quadratic equations and describe their solution sets.
(a) $x^{2}-2 x y+2 y=0$,
(b) $x^{2}+2 x y+y^{2}+2 y=-6$,
(c) $* 5 x^{2}+4 y^{2}-2 x y+a x=-1, \quad a \in \mathbb{R}$.

